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ABSTRACT

The estimation of the price of an insurance risk is a very important actuarial problem.
This price has to reflect the property of the distribution of the random variable describing the
corresponding loss. If the loss variable has a heavy-tailed distribution (i.e. distribution with an
infinite variance) then, the risk measure (as 2 measute of the risk premium) should be higher.
For providing; risk measures with heavy-tailed distributions, standard procedures from classical
statistics (when the variance is finite) cannot be applied. In this paper we propose confidence
interval estimation for the Wang’s right-tailed deviation risk measure for heavy-tailed losses.

Keywords: Fleavy-tailed distribution, Wang’s right-tailed deviation, risk measure, Hill estimator.

1. INTRODUCTION

A main actuarial problem involves
providing the risk measure of an insurance
risk. This risk measure has to reflect the
property of the distribution of the random
variable describing the corresponding loss. For
example, when considering the variability of
the loss vatiable, the shape of the distribution
and particularly the tail behavior influence the
risk measure. If the loss variable has a heavy-
tailed distribution, then the price should be
higher. In risk management, normal
distributions have been commonly used to
model those of the loss variables. However,
the empirical studies conclude that financial
and actuarial data exhibit systematic deviations
from normality and usually have heavier tails
than the Gaussian model. Therefore, it is
appropriate to model the underlying

distribution function F as one which is heavy-
tailed. Recently, the empirical estimation of
risk measures and related quantities were
proposed by Jones and Zitikis [1]. Interval
estimations of various actuarial risk measures:
proportional hazards transform (PHT), Wang
Transform (WT), Value-at-risk (VaR) and
conditional tail expectation (CTE) were
proposed by Kaiser and Brazauskas [2] for
the case of finite variances. Nevertheless, for
heavy-tailed losses, these results are not
appropriate when the variance of the loss
vatiable is infinite.

Many authors proposed the estimation
of several actuarial risk measures for heavy-
tailed distributions. For example, Necir and
Meraghni [3] proposed the estimation of the
proportional hazard premium for heavy-




tailed claim amounts. Necir et al. [4] proposed
the estimation of the conditional tail expectation
for heavy-tailed losses.

In actuarial science and finance,
traditionally, 2 common used measure of
risks is the standard deviation. The standard
deviation is a “standard” measure of the
deviation from the mean of a disttibution with
finite variance. Even if the standard deviation
has been used to measure the deviation from
the mean for general distributions, it is not a
good risk measure for large insurance risks
with heavy-tailed distributions, as reported by
many authors, for example, Ramsay [5] and
Lowe and Star:ard [6]. Wang [7] had proposed
the right-tailed deviation as a new risk measure,
which has the common ordering of risks such
as first and second stochastic dominance.
Moreover, the right-tailed deviation is addidve
when the risk is divided into excess of loss
layers. Hurlinann [8] showed that Wang’s
right- tailed deviation is 2lso a degree 2 tail
free risk measure while conditional value at
risk and Wang transform are not. Therefore,
it is of interes: to construct a new estimator
of a risk measure by Wang’s right-tailed
deviation.

In this paper we propose the confidence
interval estimation for the Wang’s right-tailed
deviation risk measure under heavy-tailed
losses. We focus on the popular tail index
estimator due to Hill [9]. Then we use the
well-known high quantile estimator to estimate
high quantile, ~/(1-s) for sufficiently small s,
proposed by Weissman [10], since high
quantile is better than empirical distribution
when the underlying distribution is heavy-
tailed, refer to J<im and Hardy [11], and Necir
and Meraghni [3]. ‘

This paper is organized as follows: in
Section 2 we introduce heavy-tailed distribu-
tions. We explain the Wang’s right-tailed
deviation in Section 3. In Section 4, we
construct a risk measurs estimation. We

conclude in Section 5. In Section 6, we provide
the proofs of our results.

2. HEAVY-TAILED DISTRIBUTIONS

In this section, we introduce heavy-tailed
distributions. Heavy-tailed distributions are
appropriate for modeling the random
fluctuations of typical phenomena such as
flood levels of rivers, insurance claims, high
wind speeds, as well as situations in economics,
ecological systems, internet traffic, finance and
business. Examples of applications can be
found in many book see Beirlant et al.[12],
Markovich {13], and Resnick [14]). Examples
of ‘heavy-tailed distributions are Pareto,
Cauchy, Log-gamma, Burr, t-distribution.

The distribution of Y is said to have a heavy-
railed distribution when its tail probability
F(x):=P(X>x)is regularly varying at infinity
i.e., there exists some o > 0 such that for all
>0
F(rx) .
—_ > I
as x—, where & be the index of regular
variation. Equivalently,

F(x) =x%L(x), x>0 )

where L(x) is a slowly varying function.
Speaking roughly, heavy tailed distributions
have tails that are thicker than the exponential
distribution. The class of distributions satisfying
(1) includes the distributions in the domain
of attraction of stable laws (see Hill [15]).

A distribution function is in the domain
of attraction of a stable law with stability index
0 < a <2, notation: F' € D(a), if there are
two real sequences 4, > 0 and C, such that

Al s xc |- Pys o6
“n PR - a(a’ ),
2s n —> 00 (3)
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where D denotzs convergence in distribution,
and where S _(0,0,10) is 2 stable distribution
with parameter 0 < €< 2,-1<8<1,6>0
and -0 < U < . In addition, if we denote by
G(x) = P(}X] < x) = F(x) - F(=x), x > 0, the
distribution function of Z:= ]X l, then the tail
behavior of F € D (@), for 0 < a0 < 2, is
described as follows;

(i) The tail | — (G is regularly varying at infinity
with index @, i. e.

(1-G(Gm)) o

lim , x>0 “)

e (1-G(1)
(i) There exists 0 < p < 1 such that
i U2E)
N -60)
. F(=x)
lm————=1-p = 5
rl—»o(—G(x)) P =q ®)

There are many ways ro identify whether

3

a distribution is heavy-tailed or not. One of
the convenient graphical tools is the QQ-plot,
where the quantiles of empirical distribution
are plotted vs. the exponential distribution. If
QQ-plot is linear then, the sample comes
from a distribution with medium-sized tails.
If the plot is concave then, the sample comes
from a distribv.tion with heavy tails, otherwise
it is convex, and the sample comes from a
distribution with short tails (see, Gencay et al.
[16)).

The tail index has a important role in
studying heavy-tailed distributions. It
determines the shape of the tail. The tail index
estimator is computed based on the
proportion of extreme value statistics in the
sample distribution. Hill estimator is a popular
estimator which is proposed by Hill [9]. Hill
estimator is a maximum likelihood estimator
for the tail of a distribution.

A 1 k1 X( -7 1)
= log™ gy
Y X 27 g X(,,_k) ©

15

whete X(k) denotes the k™-order statistics of
a random sample X, X,, ... , X from X. We
can rewrite as

k

L1 R N
pEa 1log Xy —log" X, (7

jz

where log" u := max (0, log u). This estimator

is consistent for Y= —01_!_ ,le.

for kn——>oo,%"_—)0.
We have
e 4

where P denotes convesrgence in probability.

Properties of Hill Estimator have been
established by Mason [17] assuming only that
the underlying distribution is regularly varying
at infinity. Asymptotic normality of };n has
been investigated under various conditions by
a number of researchers (see de Hann and
Resnick [18], Deheuvels et al. {19], and Berilant
and Teugel [20]).

‘'The right and left high quantiles of small
t of distribution function F, respectively, are
rwo reals X, and x, defined by I — F(x,) =t
and F (t,ie.x,=F'(1-f) and x, = F'(t) Let
&k =k and [ = [ be sequences of integets
‘called trimming sequences) satisfying
k L
n n
1 — 00. Weissman estimators of high quantiles

l<k<nl<i<n = —0and = -0, as

x, and x, are defined by as

) k 147 y
xLzFL'l(t)::(;) Xyt a8 10

Ve
5 1 " -y
Xp =Fp (1-1) = (;j Xt =,

as 1—0 (8)




P

where

1 . N
=V =7L(k)

aL
1& + +
= ;glog (‘1¥(,-)) —IOg (_X("))
|
—=7=7z(D
aR
1, :
= 7;103 (X (i) ~log" (X, ) ®

are two form of Hill estimator for tail index
o which is also estimated, using the order
1sti <z <
statistics 2, <2, < ... 2., ‘
(2} 2y o z ) from z, as follows:

associated to a sample

N .
7=7 ()= ;;Z log"(Z,,..,) - log(Z,,,) (10)

where m =m_is an intermediate sequence the
same conditions as k and 1.

It is important to determine the optimal
threshold k and /. A number of methods for
estimation optimal and were proposed in the
literature (see, Dekker and de Hann [21],
Cheng and Peng [22], and Dees et al. [23])

3. THE WANG’3 RIGHT-TAIL DEVIATION

Wang [7] has proposed the right-tailed
deviation as a new risk measure when the
undetlying distribution is heavy-tailed, which
is motivated from various perspectives such
as the certainty equivalent approach, the
patamettic approach and distance between
loss distribution. He showed that the right-
tailed deviation is consistent with the first
and second stochastic dominance, and is
appropriate when a risk is divided into
excess of layers, which is advantageous in
calculating risk charges in reinsurance pricing,
The Wang’s right-tailed deviation risk measure
is defined by

2(X)= ] 1= F(x)dx— E(X)

;:T,/L—F(x)dx—]i(l-F(x))dx

= [(w ()~ w2 () F ' (s)ds

- [woF s
° ay

where
. 1 _ 1
=5 YO = Land y ()= =1
In this form, the Wang’s right tail deviation
risk measure is similar to a spectral risk
measure (see Sriboonchitta et al. [24]).

1 —
2i-s

is not the weight function. But, nevertheless,

Indeed, this function v (s)= 1

we can use this function to construct
estimation for right-tailed deviation risk
measures by the L-Functional, proposed by
Necir and Meraghni [25]. For application, we
need the following regularity assumptions on
function Y are required

‘A1) y is differentiable on (0,1).

oo e d-s)
(A2) Iim—————==2<w

=0 y(s)

=2<®

(A3) Both y/(s) and y(1-s)are regularly varying
at zero with common index f=1 &R

1 L 1

—f{1— 2 -1 N

50 l//(s) 50 l _ 4%— _l
2(1 s) -1 5
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and
1 _L
3 —(xs) 7 -1
lim "’(11 xs) = lim 21 =1
g l//( —S) (S) 2

(A4) There exists a function a(-) not changing
sign near zero such that

p(xs) s
w(s) 5 x°—1

=x , Vx>0
50 a(s)

where ® < 0 is the second-order parametet.
We will use this assumption to construct
estimation for right-tailed deviation risk
measute in next Section.

4. CONSTRUCTION OF ESTIMATION FOR

WANG’S RIGHT-TAILED DEVIATION RISK

MEASURES

4.1 Construction of a Risk Measure Estimator
We ptopcse a risk measure by using the

Wang’s right-tailed deviation, as proposed in

Section 3 and we define it as

of 1
p=] [z/:;

where F*I(s) == max {x : F(x) > s}.
Generally, the distribution function F'is
unknown so £(X) is also unknown. Suppose
that we have X, X,, ... , X iid random
variables with distribution function, F. We can
estimate the risk measure by L-statistics as

PX) = Z

]F'l (Hds (12

(13)
where
iln
¢,= | w(s)ds,i=1,2,..,nand the X
(i-1)/n
are order statistics i.e., X < X <X

(S (2) (n)°
Next, we recall the asymptotic normahty

properties of the estimator p(X).

Theorem 1
If ¥ is a continuous function on (0,1) which
satisfies the condition

ly ()] <esot(1 —s)f,0<s<1 (14)

for some constant

®, B> 0 and ¢ <, and if E[|X["] < oo for
1 1
come Ysuch that y< " and }/>ﬁ , then

o(X)—E—>p(X) asn—oo (15)

See Shorack and Wellner [26]
Theorem 2

If there exists ¥> 2 such that E[|X]'] < oo,
then

Jn(p(xX) - p(x)—E> N(0,07)

asn— @0 (16)
where D denotes convergence in distribution,
and where the asymptotic variance 0 *is given
by

57= | ey PP WO WF )y
an

where x A y = min(x,y)

See Jones and Zitikis 1]

Otherwise, if the variance of distribution
F is infinite then we cannot use the classical
central limit theorem. It is of interest to
construct a risk measure estimator and its
confidence interval in case of the variance of
the distribution function F is infinite. Here,
we propose a new estimator based on the
estimation of high quantiles.

We now define our estimator of our risk
measure P(X) by dividing p(X) into three
integrals as follows




kin 1-l/n

pX) = [y©F (s)ds+ | p(s)F (s)ds

kin

+ _f w(s)F'(s)ds

1-1/n

=8, + 8y + &

(18)

By subsntutlngr £ ,(s) and F w(s) for F~ ')
by F'(1-s) in.5, andS  respectively and using
of assumption (A3) then

kin . k Y kin A
Jw(s)ﬂ“(s)ds{;] Xy | 7 ods
0

( (1)) (k/nz)l//}fk/n) X(k)a

L

and

1
Xy [ 5B - s)ds

1-in

jw(l E 11— s)ds—-(i)k

iin

= (o=

- (n-1)>

2-7%

Thus, we can estimate S, and S, by
~ ki/n)y(k/n
S, = (_—2)1//+—JX(I¢)’ (19

7
and
« _(I/n)y(1-1/n)
S, = ~

2-7z
respectively. We take the sample one to
estimate the S, , that is

(n-1)> (20)

1-lin

) . ‘n—I
Su= | W@k ods=S ¢, X,

kin i=k+1

@1

with the same constant ¢, as appear in (13).
Therefore, the our estimator is

p\(X):S'L_*_SA[_*_ﬁR

{k/n)y(k/n) n-1
= - X+ X e X .+
2-5, @70
({/nyw(1-1/n)
i YD 2)

"“he asymptotic normality of our estimator is
establish in the following theorem.

“Theorem 3

Assume that FeD(o), 0 < o < 2. for any
measurable function Y that satisfies
assumption (A1-A4) with index 1 € R such

that %< Y <2,

integers k and / such that 1 <k<n,1</<n,
k-0, w,k/in—>0,1/n—>0,l/k—- 0<w

and fka (k/n) A(k/n)n = 0, as n — o,

and for any sequences of

swve have

n(p(X)- p(X))/ 5, —2>N(0,02),
af 1 —> ©
where

oy = oy (a) =(a+l){a+ 2)[ 2’ +(a2£-215j1;:z(a ) b ]—(—1
Corollary
Under the assumptions of theorem 3 we have

;//; 2(ﬁ(X)—p(X)) D N(O’Vz)’
(l/n) l//(l—l/n)X(n_l)
asn — o
vwhere

72 2 (a, g, p) = (1 +27 (q / p)_zm 49‘3”/“)

2 1\ _
y 20" +(a-1) +24(z(a 1)+ 1 .
2(2a-1) 2a-1

with (p,q) as in statement (i) of Section 2

4.2 Constructing Confidence Intetval for
Eisk Measures

Suppose that, for n large enough, we
have a realization (x,x,, ... , x,) of a sample
(XX, ..., X)) from the random variable X
with distribution function F that satisfies all
assumptions of Theorem 3. The confidence
interval for our risk measure will be computed
as follows:




e Select the optimal integer m* and of lower
and upper otder statistics that is in (8), (9),
and (10).

e Find X ., X vk /n), y(1 =1/ n)
and 8°=1"/ k"

o Calculate &) := dj (k") and & := &, (I') by
using (9). Then estimate )

e Compute

d = @(m") and .= P (m") Then calculate

the asymptotic standard deviation

V= J_ ¥.0°,5,)

Therefore, the (1-1)% confidence interval of
our risk measutre will be estimated by

VX, (=1
n
where z_, is the (1-7 / 2) quantile of the

standard normal distribution N(0,1) with
o0<n<1

A%
Ptz

5. CONCLUSIONS

In this paper, we investigated the
estimation of a risk measure for heavy-tailed
losses. The results are obtained for a specific
risk measure, namely Wang’s right-tailed
deviation, but the techniques seem appropriate
for other types of quantile-based risk measures.
We intend to pursue this topic for general
cases.

6. PROOFS
Proof of Theotem 3
Recall (18), (19), (20), (21), and (22) and write

pO-p (X):(SL_SL )+('§:M_S M)+(§R"S W (23
We have

R (k1w mX, &

S8, 25, 1 === [wor o

0

=R+ R +R; 24)

where

RE = G /iy X | i@
L= Y (. ). (k)[Z&L—l a1/

ak/ mF Gk imyin] X
R= 200-1 LF (ke n) 1]’ (25)
, -1 ! kin
RE = atk/mF (kimy(k/n) j w(F (Ot
2a-1 A

Likewise we have

5,5, =l Ty )P (1-t)d

=Rf+ R2R+R§ (26)
where
RR = (k[ i (e I m)X | =2 =2
= (e my k) ("’[Z&L—l 2a-1
r. o/ mF =1/ nyy(-1/n) Xooy
= 20 -1 { F(-1/n) 1} @27)

/
RY = ol mF~ (12al 1n)t//(l 1/ n) J- (5 (L= )t

R} may be rewtitten into

@& kimyk/mXp[1 1 }
(2a- 1)z a, a

Since @&, is a consistent estimator of a, then

RE=(1+0,() 28)

for all large n

a

RE=(1+0,() (1) ”

(29)

In view of Theorem 2.3 and 2.4 of Csorgo
et al. [27], Peng [28] and Necir et al. [29] has
been shown that under the second-order
varying function and for all large n

B
‘/;(F)il(: ™ ,'1] - '“_IJ%B" (Z;“J wor (),

X (k

F(_",)( ) 1+0, (1), (30)
where {B(s),0 <s <1, n= 1,2,...} is the
sequence of Brownian bridge. This implies

that for all large n

R =(1+0 (1)\a(~/l;/n)l//(k/n)Fvl(k/n)
y = (D) .
(2a-1)

el e

. a(k /I mywk ! m)Fk/ k
-l (6 )

201




we have

ORI
sz o) (31)

Likewise we have

J;(o}?;;&) G 7] —‘f \[ ﬂ_)ds]
A 1[_\/%"(1—%)}%(1) (32)

where
o, = 2(q / p)'"* 0¥ @. From the proof
of Theorem 1 by Necir et al [29] yield that

VnR?  JnRE

o,w) o,

@)=o) as n—> (33)
Then, by (31), (32) and (33) we get

Vn(pO0) - px)) _Vn(R!+R)
o) o, (¥)

AR oR I

1-1in
—_W—JZB;:(E)*’O (1)__-‘.k/n w
2a-1¥k ")t o, )

The asymptotic variance of

Vi (H(X) - p(X))
c,w)

is computed by

kin kin
_,1,22[‘7 az 1) k_[ J-S/\t st

i
e " s Nt —st

RO I de(s)
+w2(l—a)2(l—--]+ kin kin
n Gn(w)

+al(l-a) (1 - 1)
n

2 1

1
114 n SAL—St

+o’ — | ds dt

! (2&"1)4 ll—'l"/n 1—.1[/11 st

kin
t- ¢
-w'a(1-a)= | —(kt/i)dz
0

— 4oty / o, ()

[k/n ll/n
k/n
a(l a)\];\/;kj"s a- I/n)s

, nfn*¢ .t sAt—st
oo, Rt —Idsf dt
1) k l L] 1-1in st
1-I/n
S TN P
(2a - l)

+How, (1 )

2 ()
awenmi [ e

1_a 1-i/n
e 1-=||de(t)/
“(2«1—1)2( J ( o j] W)
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